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ABSTRACT

Objective: Although several studies have described an association between Alzheimer disease
(AD) and genetic variation of mitochondrial DNA (mtDNA), each has implicated different mtDNA
variants, so the role of mtDNA in the etiology of AD remains uncertain.

Methods: We tested 138 mtDNA variants for association with AD in a powerful sample of 4,133
AD case patients and 1,602 matched controls from 3 Caucasian populations. Of the total popu-
lation, 3,250 case patients and 1,221 elderly controls met the quality control criteria and were
included in the analysis.

Results: In the largest study to date, we failed to replicate the published findings. Meta-analysis of
the available data showed no evidence of an association with AD.

Conclusion: The current evidence linking common mtDNA variations with AD is not compelling.
Neurology® 2012;78:1038–1042

GLOSSARY
AD � Alzheimer disease; DSM-IV � Diagnostic and Statistical Manual of Mental Disorders, 4th edition; GERAD1 � Genetic
and Environmental Risk for Alzheimer’s Disease Consortium 1; LHON � Leber hereditary optic neuropathy; MMSE � Mini-
Mental State Examination; MRC � Medical Research Council; mtDNA � mitochondrial DNA; SNP � single nucleotide
polymorphism.

Both genetic and environmental factors contribute to the risk of developing Alzheimer
disease (AD), with heritability estimates of up to 79%.1 Variants in 3 genes (APP, PS1, and
PS2) cause rare Mendelian forms of the disease, and 10 loci increase susceptibility for the
more common late-onset form.2 Although known genetic variants account for 32% of the
genetic variation in AD, most of the genetic variance associated has yet to be attributed to
specific loci.

Progressive mitochondrial dysfunction has been reported in the postmortem AD brains3

and non-neural tissues,4 implicating a systemic defect of oxidative phosphorylation. Thir-
teen essential respiratory chain proteins are synthesized from maternally inherited mito-
chondrial DNA (mtDNA). Several studies have reported the association of different
mtDNA haplogroups or specific mtDNA single nucleotide polymorphisms (SNPs) with
AD, with both concordant and conflicting results (table 1). Many of these studies were
small and had limited power, but 2 of the larger studies reached different conclusions. In
170 AD case patients and 188 controls, mt.9698T, mt.11467G, mt.12308G, mt.12372A,
and mt.16270T were associated with AD.5 These SNPs are found almost exclusively with
haplogroup UK. However, in 936 AD case patients and 776 controls, mt.4336C and
mt.15883T were associated with AD6 and fall within haplogroup H. mt.4336C defines
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subhaplogroup H5a, which can then be fur-
ther subtyped into subhaplogroup H5a1,
based on mt.15833T.6 In an attempt to re-
solve this issue, we tested mtDNA variation
for association with AD in a large cohort of
AD case patients and age-matched controls
from 3 Caucasian populations.

METHODS We studied 138 mitochondrial variants present
on the Illumina 610-Quad chip genotyped in 4,133 AD case
patients and 1,602 elderly, ethnically matched controls from the
United Kingdom, United States, and Germany as part of the
Genetic and Environmental Risk for Alzheimer’s Disease Con-
sortium 1 (GERAD1) study.

The GERAD1 sample has been extensively described else-
where.1 These samples were recruited by the Medical Research
Council (MRC) Genetic Resource for AD (Cardiff University;
Institute of Psychiatry, London; Cambridge University; and
Trinity College Dublin); the Alzheimer’s Research UK Collabo-
ration (University of Nottingham; University of Manchester;
University of Southampton; University of Bristol; Queen’s Uni-
versity Belfast; and the Oxford Project to Investigate Memory
and Ageing, Oxford University), MRC PRION Unit, University
College London; London and the South East Region Alzheimer

Disease project, University College London; Competence Net-

work of Dementia and Department of Psychiatry, University of

Bonn, Bonn, Germany; Washington University, St. Louis, Mis-

souri; and the National Institute of Mental Health AD Genetics

Initiative. AD case patients met the criteria for either probable

(National Institute of Neurological and Communicative Disor-

ders and Stroke–Alzheimer’s Disease and Related Disorders As-

sociation7 and DSM-IV) or definite (Consortium to Establish a

Registry for Alzheimer’s Disease8) AD. Controls were screened

for dementia using the Mini-Mental State Examination or Alz-

heimer’s Disease Assessment Scale–Cognition, were determined

to be free from dementia at neuropathologic examination, or had

a Braak score of �2.5 (table e-1 on the Neurology® Web site at

www.neurology.org).

All DNA samples were genotyped at the Sanger Institute

(Cambridge, UK) on the Illumina 610-Quad chip. Included

in the array were the variants used to define haplogroup H5

and its subgroups, H5a and H5a1 (mt.456C�T,

mt.4336T�C, and mt.15833C�T, respectively) and 4

variants found on haplogroup UK (mt.11467A�G,

mt.12308A�G, mt.12372G�A, and mt.9698C�T), which

were previously associated with AD.5,6 Stringent quality con-

trol filters were applied to remove poorly performing samples

using tools implemented in PLINK v1.05 (http://pngu.mgh.

harvard.edu/�purcell/plink).1,9 We excluded individuals with

Table 1 Published studies of mitochondrial DNA in Alzheimer’s diseasea

Author and year Journal Patients Controls Variant Haplogroup p Value OR Gender

Lakatos et al., 20105 Neurobiol Aging 170 188 mt.11467G UK 0.003 2.22

mt.12308G UK 0.006 2.03

mt.12372A UK 0.006 1.99

mt.9698T u8 0.021 2.26

mt.16270T 0.048 2.52

Santoro et al., 20106 PLoS One 936 776 mt.4336C and
mt.15883T

H5 0.001b 1.85

H5 0.033b 2.19 F

Kruger et al., 201018 Mol Neurodegener 128 99 IWX 0.03 2.69

Maruszak et al., 200919 Neurobiol Aging 222 252 mt.7028C and
mt.4580A

HV 0.03b 1.59

Mancuso et al., 200720 Neurol Sci 209 191 No association
identified

Elson et al., 200621 Hum Genet 260 243 No association
identified

van der Walt et al., 200422 Neurosci Lett 989 328 mt.10398A and
mt.12308G

U 0.04b 2.30 M

mt.12308G U 0.02b 0.56 F

mt.7028T Non-H 0.05b 0.66 F

Carrieri et al., 200123 Hum Genet 213 989 mt.7028C H 2.89c

mt.10550G K 9.69c

mt.4917G T 2.66c

Chagnon et al., 199924 Am J Hum Genet 69 83 mt.709A T 0.01

mt.15928A T 0.04

Abbreviation: OR � odds ratio of association.
a The table shows the principal author, year of publication, journal, number of samples used in the study (both patients and
controls), the variants associated with Alzheimer disease and the corresponding haplogroup determined from mitomap.org,
probability of association ( p by �2 test unless stated), and OR and whether the effect was gender-specific (M or F).
b By logistic regression (including; gender, age, and APOE4 status).
c APOE4 patients only.
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missing genotype rates �0.01, those with inconsistencies be-
tween reported gender and genotype-determined gender or
ambiguous genotype-determined gender, or those who ap-
peared to be of non-European ancestry. We also examined
genetic relatedness and only retained one of each pair of indi-
viduals with an identity-by-descent estimate �0.125 (the
level expected for first cousins). After quality control, 3,250
case patients and 1,221 elderly controls remained. We studied
all 138 mitochondrial SNPs, including low-frequency vari-
ants (minor allele frequency �0.01%). Variant frequencies
were compared in case patients and controls: 1) on an indi-
vidual SNP-by-SNP basis using Pearson’s test ( p) and 2)
across the entire data set by permuting the disease status ( p*),
an approach that partially accounts for the phylogenetic
structure of the data. All statistical analysis was carried out in
PLINK (v2.050) using a single allele– based model. Published
data reporting the same mtDNA SNPs were compiled into a
single pooled analysis using the same statistical approach.
Power calculations were performed using Genetic Power
Calculator.10

Standard protocol approvals, registrations, and patient
consents. This study received national ethical approval. Writ-
ten informed consent for the research was obtained for all pa-
tients who were participating in the study.

RESULTS We observed some evidence for associ-
ation between individual mtDNA SNPs previ-
ously implicated and AD within subsets of
samples, dependent on geographical location.
However, no single SNP was consistently associ-
ated with AD across all 3 cohorts, and the p values
did not withstand a Bonferroni correction to ac-
count for multiple statistical testing. Permutation
analysis of the entire dataset also showed no signif-
icant association between any one SNP and AD,
either within each cohort in isolation or when all
3,250 AD case patients and 1,221 controls were
pooled. There was no evidence of gender-specific
association with any SNP nor any evidence of an
interaction with APOE. Power calculations
showed that we had �80% power to detect the
previously reported associations5,6 (assuming 2-tailed
significance and � � 5%) with mt.4336C (power �

83.0%), mt.9698T (100%), mt.11467G (100.0%),
mt.12308G (100.0%), mt.12372A (100.0%),
mt.15833T (94.7%), and mt.16270T (100.0%),
even though the control group was smaller than
the disease group. A meta-analysis of the current
data and previously published studies showed no
evidence of association between these 7 variants
and AD (figure).

DISCUSSION We report the largest study of
mtDNA variation in AD to date. In addition to
the major European haplogroups, our data include
variants that define subhaplogroup H5 and its fur-
ther subdivisions H5a and H5a1 (mt.4336T�C
and mt.15833C�T, respectively), along with 4 vari-

ants found on haplogroup UK (m.11467A�G,
m.12308A�G, m.12372G�A, and m.9698C�T).
Our findings fail to replicate previous studies report-
ing associations with either single genetic variants or
specific mtDNA haplogroups.

How can we explain the previous findings? The
strict maternal inheritance of mammalian mtDNA
and the associated lack of intermolecular recombina-
tion renders mtDNA genetic association studies par-
ticularly vulnerable to a population stratification
effect.11 This increases the chance of detecting a false-
positive disease association.12 In addition, given that
the size of any genetic effect is likely to be small, a
reliable association study requires a very large sample
size to deliver a consistent result.13

Although our findings show that the evidence
linking inherited mtDNA variants to AD is not com-
pelling, the relative contribution of specific mtDNA
variants could vary in different ethnic groups, possi-
bly through an interaction with environmental fac-
tors and different nuclear genes.14 In practice, this
means that the specific mtDNA variants that fail to
show an association with disease in this study could
be associated with disease in a different ethnic popu-
lation. Geographic variation in allelic association
could also arise through homoplasy. Homoplasy is
the recurrence of mutations on different branches of
the mtDNA phylogeny in different parts of the
world. Homoplasy accounts for up to 20% of
mtDNA variation and often involves nonsynony-
mous substitutions.15 This raises the possibility that
haplogroup markers tag different homoplastic func-
tional variants in different populations. If the ho-
moplasies are having a functional effect, this would
lead to different haplogroup associations in different
studies across the globe. Finally, it is possible that
geographic differences in the fine detail of the sub-
haplogroup structure of mtDNA could account for
inconsistencies between studies. This situation has
been described for the primary mitochondrial disor-
der, Leber hereditary optic neuropathy (LHON).
LHON is a maternally inherited form of blindness
primarily due to 1 of 3 mutations of mtDNA:
mt.11778G�A, mt.14484T�C, or mt.3460G�A.
The clinical penetrance of LHON is influenced by
common polymorphic variants of mtDNA.16 Spe-
cific subbranches of haplogroup J are associated with
either an increased or decreased risk of visual failure
in different populations, largely due to specific differ-
ences in the cytochrome B protein sequence.17 A sim-
ilar situation could exist for AD, but resolution of the
issue will only be possible through high-resolution
genotyping in very large cohorts of patients and care-
fully matched controls, ideally at the whole mtDNA
genome level.
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Figure Meta-analysis of the published genetic associations combined with the results of this study

Results for the fixeda and randomb effects models are shown. The size of the central box on the figure corresponds to
the relative study size in each case. The diamond shows the results of the meta-analysis. Current � data from the
study reported here; L95 � lower 95% confidence interval; OR � odds ratio; U95 � upper 95% confidence interval;
Z � z score.
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